If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x+2x^2=796
We move all terms to the left:
10x+2x^2-(796)=0
a = 2; b = 10; c = -796;
Δ = b2-4ac
Δ = 102-4·2·(-796)
Δ = 6468
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6468}=\sqrt{196*33}=\sqrt{196}*\sqrt{33}=14\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-14\sqrt{33}}{2*2}=\frac{-10-14\sqrt{33}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+14\sqrt{33}}{2*2}=\frac{-10+14\sqrt{33}}{4} $
| 6p-18=42 | | 2(3x-4)+6=54 | | 14/x=x/6 | | 1080=6x+375 | | 2x+5=19 | | 7x+6-x=-12 | | 5x+7-3x=-x+1+3x | | 1080=6x+750 | | 480=x^2 | | 4=t/2 | | 2m+1.5=3m-11.7 | | 12=-2(5x+6) | | 4(b-2)=18 | | 1080=7x+1260 | | 1080=7x+1050 | | 62.3=7m+18.2 | | X+5/12=1/6+x-1/5 | | 4x-29=-x+1 | | 2k+11k-12-3k=28 | | 1/4(s+6)=-3 | | -1=5/6+x | | 1080=7x+525 | | -4=-2x-20 | | -2(x+6)=4x | | -5b+1=-19b+1+14b | | -b+21=-13 | | 2x=2+3x+62+180 | | 2.5(t-24)-3(t-2)=28 | | -3y-3=-2-3y | | 1+5b=6b-9 | | -7s-6=-6s-10 | | 3x+20=2x+12 |